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Abstract. We present a quantum mechanical model of the magnetoresistance in ferromagnetic tunnel
junctions artificially doped by the introduction of layers of impurities in the middle of the barrier. The
electron transport across the barrier is described by a combination of direct tunneling, tunneling assisted
by spin-conserving scattering and tunneling assisted by spin-flip scattering. With this model, we interpret
recent experimental results concerning the dependence of the TMR amplitude on the amount of impurities
in the barrier and on temperature.

PACS. 75.70.-i Magnetic properties of thin films, surfaces, and interfaces – 73.50.Jt Galvanomagnetic and
other magnetotransport effects (including thermomagnetic effects) – 85.30.Mn Junction breakdown and
tunneling devices (including resonance tunneling devices)

Magnetic tunnel junctions consist of two ferromagnetic
layers separated by an insulating barrier. By using two fer-
romagnetic materials of different coercivity or by pinning
the magnetization of one of the ferromagnetic layer by
exchange anisotropy, the relative orientation of the mag-
netization in the two magnetic electrodes can be changed
from parallel to antiparallel by an external applied field.
The TMR amplitude is defined as the ratio σP−σAP

σAP ,
where σP(AP) is the conductance of the structure for paral-
lel (antiparallel) magnetic configuration. Recently, Jansen
and Moodera investigated the influence on the magnetore-
sistance (TMR) of Co/Al2O3/NiFe magnetic tunnel junc-
tions of the presence of impurities (Co, Ni, Pd, Cu) arti-
ficially introduced in the middle of the tunnel barrier [1].
It was observed that the TMR decreases approximately
linearly with increasing impurity content. The decrease is
most pronounced for Ni, relatively weak for Co and inter-
mediate for Cu and Pd. A correlation was found between
the rate of the decrease and the spin carried by the im-
purities embedded in Al2O3. These results showed that
the TMR can be severely reduced as a result of spin-flip
scattering in the barrier.

From a theoretical point of view, Tsymbal et al. in-
vestigated the influence of impurities within disordered
insulators on the spin polarization of tunneling electrons
and on the magnetoresistance [2]. The disorder in the in-
sulator was introduced through a randomness of the onsite
energies of the insulator host atoms. Furthermore, the im-
purities were assumed to be randomly distributed inside
the barrier with a fixed onsite energy. Spin-flip processes
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were not taken into account. The conductance of this type
of tunnel junctions is mainly determined by two mecha-
nisms: (i) Tunneling through resonant channels, specific
for each disordered barrier, (ii) Tunneling via impurity
mini-bands, which are formed within the band gap of the
insulator. In reference [2], it was found that the latter
mechanism increases the conductance by several orders of
magnitude when 5% impurities are introduced. However
in the experiments of reference [1], the introduction of im-
purities results in a decrease of the conductance only by a
factor of two. This relatively weak conductance variation
is due to the fact that all the impurities introduced within
the Al metallic layer are also oxidized during the oxida-
tion of Al in Al2O3. Therefore the impurities in [1] must
be considered as additional barriers for the tunneling elec-
trons but with a barrier height which can be different from
that of alumina. In this case, in contrast to the situation
investigated in reference [2], there are no resonant states
inside the barrier. The difference in the heights of the host
and impurity barriers leads to scattering of the tunneling
electrons. The resonant tunneling which was considered in
reference [2] does not occur here.

In this paper, we present a quantum theory of TMR
in doped junctions such as those studied in reference [1].
The theory takes into account three tunneling processes
across the barrier: direct tunneling, tunneling assisted by
spin-conserving scattering and tunneling assisted by spin-
flip scattering. This model allows us to interpret Jansen
and Moodera’s results [1] with two adjustable parameters
that will be described further.

Our model system is a sandwich of the form F1/O/F3.
F1 and F3 are two semi-infinite ferromagnetic layers and O
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is the insulating tunnel barrier of thickness b. Further-
more, we assume that a submonolayer of impurities is
introduced in the middle of the barrier. These impuri-
ties are first characterized by their concentration cB in
this submonolayer plane. The atomic concentration cB

is given by cB = timpurity
aAl2O3

where timpurity is the effective
thickness of the impurity layer introduced in the exper-
iments and aAl2O3 is the interatomic spacing in Al2O3.
From an experimental point of view, if a physical vapor
deposition technique is used to prepare these junctions,
then this effective thickness timpurity would be determined
by the deposition time, the deposition rate having been
previously calibrated. We chose aAl2O3 = 2.5 Å in this
amorphous oxide. The rest of this submonolayer is made
of Al2O3 with a concentration cA = 1 − cB. The impuri-
ties are also characterized by their scattering potentials:
δ = EBδ(ρ−ρn)δ(z−0) and δSF = ESF

B δ(ρ−ρn)δ(z−0) for
the spin-conserving and spin-flip scattering respectively.
The z-axis is perpendicular to the plane of the structure,
the submonolayer of impurities is located at z = 0. ρ des-
ignates the in-plane coordinates. The impurities are lo-
cated at the points of coordinates (ρn, 0). The tunneling
electrons are described in the following way: Let us sup-
pose that the exact wavefunctions propagating from the
left side of the barrier Ψσ

L (EF,x) and from the right side
of the barrier Ψσ

R(EF,x) are known. σ =↑, ↓ represents
the spin direction, EF-Fermi energy and x-the electron’s
momentum in the plane of the layers. The insulator is de-
scribed as a flat barrier with height U0. The imaginary
momentum of the electrons inside the barrier is there-
fore equal to iq = i

√
q2
0 + x2, with q0 = 1

�

√
2m(U0 − EF)

and m is the effective mass. The system without impuri-
ties is then characterized by two parameters which are q
and Cσ(EF, x), the latter being defined by iCσ(EF, x) ≡
∂ lnΨσ

R(EF, x, z)/∂z|z=− b
2

= −∂ lnΨσ
L (EF, x, z)/∂z|z=− b

2
.

In the free electron model, Cσ would be defined by Cσ =√
kσ2
F − x2 in which kσ

F is the Fermi-momentum of elec-
trons with spin σ. The free electron model is based on
the picture of the band-structure of magnetic transition
metals proposed by Stearns [3] and subsequently used by
various authors [4,5].

To calculate the two-point conductivity σ(z, z′), the
Kubo formula in mixed real-space(z)/momentum(x) rep-
resentation is used [5,6]. The bias voltage is supposed to
be low enough to stay in the regime of linear response:

σ(z, z′) =
4e2

π�

∑
x,x′,i

Aσ
xx′

↔
∇z

↔
∇z′Aσ

xx′ (1)

where
↔
∇z =

1
2

(
←
∇z −

→
∇z

)
is the anti-symmetric gradient

operator, Aσ
xx′(z, z′) = 1

2

[
Gret,σ

xx′ (z, z′) −
(
Gret,σ

xx′ (z, z′)
)∗]

and Gret,σ
xx′ (z, z′) is the retarded Green function of an elec-

tron with spin-index σ. The — symbol denotes the averag-
ing over the distribution of impurities in the submonolayer
of impurities. We point out that in the present case, the
so-called vertex corrections to the conductivity are not
zero, contrarily to the case of macroscopically homoge-

neous media. This point will be developed further. The
Hamiltonian of the considered structure is written:

Ĥ = Ĥ0 + Ĥspin−cons + Ĥspin−flip, with (2)

Ĥ0 =
∑

σ

∫
drΨ+σ

[
− �

2

2m
∇2 + Uσ

]
Ψσ(r) (2a)

Ĥspin−cons =
∑
σ,n

drδ(z)δ(ρ − ρn)εσ
nΨ+σ(r)Ψσ(r) (2b)

Ĥspin−flip =
∑

n

δ(z)δ(ρ − ρn)

×
[

Jn

(
Ψ+↑(r)Ψ↓(r)S−(ρn) + Ψ+↓(r)Ψ↑(r)S+(ρn)

)
+λ̂n(ρn)

(
Ψ+↑(r)Ψ↓(r) + Ψ+↓(r)Ψ↓(r)

) ]
(2c)

where H0 describes the free motion of the electrons
through the structure, Hspin−cons describes the electron
scattering on the random potential εn of the impurities
and Hspin−flip describes the spin-flip electron scattering on
the spin fluctuations of the impurities (first term in (2c))
and spin-orbit contribution to the scattering (second term
in (2c)). Ψσ(r) are field operators, Jn – exchange integral
of the electron and impurity spins, λ̂n – operator of the
spin orbit interaction. Uσ = V σ for z within the ferro-
magnetic layers, where V σ represents the spin-dependent
position in energy of the bottom of the conduction band
in the ferromagnetic layers. Uσ = U0 for z within the tun-
nel barrier. εσ

n, Jn, λn take the values Eσ
B, JB, λB if the

impurity is situated on site n and Eσ
A, JA, λA on the host

atom.
In order to calculate the Green functions of Hamilto-

nian (1), the vertex corrections and finally the conduc-
tivity, the coherent potential approximation (C.P.A.) is
used [7]. We therefore introduce the coherent potential
Σσ located on the plane of impurities, and the effective
Green function Geff,σ,σ, which is equal in C.P.A. to the
exact Green function Gσ,σ averaged over the distribution
of impurities:

Ĝ(ρ, z, ρ′, z′) = Ĝeff(ρ, z, ρ′, z′)

+
∫

Geff(ρ, z, ρ′′, 0)T̂Geff(ρ′′, 0, ρ′, z′)d2ρ′′ (3)

where T̂ =
∑

n T̂n is the operator of the full T -matrix,
describing the electrons scattering, and T̂n is the single
site T -matrix. A difference from the usual Green function
formalism [7] must be pointed out: The Green functions
and T -matrix are here matrices in spin space, due to the
presence in the Hamiltonian of spin-flip terms. In contrast
to [7], Geff describes the motion of the electrons not in a
uniform effective field but in a potential which is spatially
modulated. However the procedure of the calculation can
be easily generalized for the case under consideration. Af-
ter averaging equation (3) over the configurations of im-
purities, over the spin S and orbital degrees of freedom,
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σ↑
AP =

8e2

�π2

��������
�������

Z min
�

k↑
F1,k↓

F3

�

0

xdx
q4c↑1c

↓
3e

−2qb�
c↑21 + q2

��
c↓23 + q2

�
|2q + Σ↑|2

+

�
�
Z k↑

F1

0

xdx
q2c↑1e

−qb�
c↑21 + q2

�

× a2
0

2π

	


Z k↓

F3

0

xdx
q2c↓3e

−qbΓ ↑
0�

c↓23 + q2
�
|2q + Σ↑|2

+

Z k↑
F3

0

xdx
q2c↑3e

−qbΓSF�
c↓23 + q2

�
|2q + Σ↓|2

�
A
�

+ [1 ↔ 3]

��������
�������

(10)

one obtains: 〈
G

〉
= Geff (4)

and




〈
T

↑↑
n

〉 〈
T

↑↓
n

〉
〈
T

↓↑
n

〉 〈
T

↓↓
n

〉

 = cA




〈
T

↑↑
A

〉 〈
T

↑↓
A

〉
〈
T

↓↑
A

〉 〈
T

↓↓
A

〉



+ cB




〈
T

↑↑
B

〉 〈
T

↑↓
B

〉
〈
T

↓↑
B

〉 〈
T

↓↓
B

〉

 =

(
0 0
0 0

)
(5)

where 〈...〉 denotes the averaging over spin and orbital
degrees of freedom. The explicit expressions for T σσ′

n are
given by:〈

T ↑↑
A(B)

〉
=(

E↑
A(B) − Σ↑

A(B)

) (
1 −

(
E↓

A(B) − Σ↓
)

F ↓
)

+ ESF
A(B)

2F ↓

Den1
A(B)

(6a)〈
T ↓↓

A(B)

〉
=(

E↓
A(B) − Σ↓

A(B)

) (
1 −

(
E↑

A(B) − Σ↑
)

F ↑
)

+ ESF
A(B)

2F ↑

Den1
A(B)

(6b)

〈
T ↑↓

A(B)

〉
=

〈
E↑↓

A(B)

〉
Den1,↑

A(B)

≡ 0 (6c)

〈
T ↓↑

A(B)

〉
=

〈
E↓↑

A(B)

〉
Den1,↓

A(B)

≡ 0 (6d)

Den1
A(B) =

(
1 −

(
E↑

A(B) − Σ↑
)

F ↑
)

×
(
1 −

(
E↓

A(B) − Σ↓
)

F ↓
)

+
(
ESF

A(B)

)2

F ↑F ↓ (6e)

where we introduced the notation: ESF
A(B)

2 =

J2
A(B)〈S+S−〉 + 〈λ̂2

A(B)〉, E↑↓
A(B) = JA(B)S

+
A(B) + λ̂A(B),

E↓↑
A(B) = JA(B)S

−
A(B) + λ̂A(B), 〈Sα

nS−
n 〉 is the av-

erage number of spin fluctuations on site n and
F ↑(↓) ≡ G↑(↓)eff(ρ, 0; ρ, 0). The effective Green function is

the solution of the operator equation:(
EF − Ĥeff

)
Ĝeff(ρ − ρ′, z − z′) = Îδ(ρ − ρ′)δ(z − z′)

(7)

in which Ĥeff coincides with H (expression (2)), where
the random potentials εσ

n are substituted by translation-
ally invariant coherent potentials Σσ. It is important to
notice that due to the identities 〈S+〉 = 〈S−〉 = 〈γ̂〉 = 0,
Σ↑↓(↓↑) ≡ 0 and Heff

spin−flip ≡ 0 as well. Then, since
Heff is translationally invariant in ρ-plane, it is easy to
solve equation (2) by Fourier transform on the coordi-
nate ρ − ρ′. The resulting expression for the function
Fσ ≡ Geff,σ(ρ, 0; ρ, 0) has the form:

Fσ = − 1
N

∑
x

1
2q + Σσ

(8)

where for convenience, we expressed the energy in units
of �

2

2m . The system of equations (5, 6a, 6b, 8) define the un-
known coherent potential Σσ. In the following, its value is
determined numerically. To find the vertex corrections, we
follow the C.P.A. method, suggested in [8]. We substitute
the expression of the exact Green functions (3) into the
expression (1) for the conductivity. In the obtained expres-
sion, besides the product of two effective Green functions,
an additional term appears, proportional to the product
of two full T -matrix averaged over impurity configuration
and over spin degrees of freedom. This term is called ver-
tex correction Γ (ρ − ρ′; z = z′ = 0) ≡ Γ (ρ − ρ′). Γ is
solution of the following integral equation:(

Γ ↑↑(ρ − ρ′) Γ SF(ρ − ρ′)

Γ SF(ρ − ρ′) Γ ↓↓(ρ − ρ′)

)
=

(
T ↑↑ T SF

T SF T ↓↓

)
δ(ρ − ρ′)

+
∫ (

T ↑↑ T SF

T SF T ↓↓

)

×
(

Geff↑2(ρ − ρ′′) − F 2↑ 0

0 Geff↓2(ρ − ρ′) − F 2↑

)

×
(

Γ ↑↑(ρ′′ − ρ′) Γ SF(ρ′′ − ρ′)

Γ SF(ρ′′ − ρ′) Γ ↓↓(ρ′′ − ρ′)

)
d2ρ′′. (9)

Due to the translational invariance in the ρ-plane of all
quantities in equation (9), the latter is easily solved by
Fourier transform. After substitution of Γ into the ex-
pression of the conductivity, we obtained:

See equation (10) above
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where C
↑(↓)
1(3) =

√(
k
↑(↓)
F1(3)

)2

− x2. We emphasize again that

kσ
F ≡ ∂ lnΨσ

R(EF, k‖, z)/∂z|z=− b
2

in the case of arbitrary
band structure of the ferromagnetic layer. Further on, the
value of kσ

F will be chosen so as to fit the experimen-
tal values of the conductance of the system in absence
of impurities. For the free electron model, kσ

F are the
spin-dependent radii of Fermi-spheres. The adopted de-
pendence of C↑(↓) on x is justified if the vector kF lies
near extremum points of the Fermi-surface. Furthermore,
the deviation from this dependence is of small importance
due to the large value of e+2qb: only small values of in-
plane momentum x contributes to the integral over x.
The vertex corrections Γ

↑(↓)
0 and ΓSF are equal to:

Γ
↑(↓)
0 =

(T ↑(↓))2
[
1 − (T ↑(↓))2D↓] +

(
(T SF)2

)2

D↑(↓)

Den2

(11)

with Den2
[
1 − (T ↑)2D↑

] [
1 − (T ↑)2D↓

]
− (T SF)2D↑D↓

(12)

where

(T ↑(↓))2 = cA

(
T

↑(↓)
A

)2

+ cB

(
T

↑(↓)
B

)2

(13)

ΓSF =
(TSF)2

Den2
(14)

(TSF)2 = cA

(
ESF

A

)2

(Den1
A)2

+ cB

(
ESF

B

)2

(Den1
B)2

(15)

and

D↑(↓) =
1
N

∑
x

∣∣∣∣ 1
2q + Σ↑(↓)

∣∣∣∣
2

−
∣∣∣∣∣ 1
N

∑
x

1
2q + Σ↑(↓)

∣∣∣∣∣
2

·

(16)

Expression (10) represents the conductance of spin-up
electrons in the anti-parallel magnetic configuration. For
spin-down electrons and in the parallel magnetic con-
figuration, the expressions for conductance may be ob-
tained from (6) by the appropriate changes in indexes ↑
and ↓. The TMR amplitude can then be calculated from:

TMR = σ↑
p+σ↓

p−σ↑
AP−σ↓

AP

σ↑
AP+σ↓

AP
.

From (10–16), it follows that the scattering of tun-
neling electrons by the impurities introduced in the bar-
rier influences the conductance and therefore the TMR in
a twofold way. Firstly, in the denominators of all terms
in (6), appears the coherent potential Σ. Consequently,
the conductance decreases when the scattering increases
i.e. when the concentration cB or the scattering ampli-
tude EB increase. The effect of the impurities, which are
oxidized together with the metallic aluminum during the

formation of the barrier by plasma oxidation [1], is to in-
crease the average height of the potential barrier seen by
the tunnel electrons.

Secondly, besides the first term in (10) which repre-
sents the direct tunneling [4], there are two additional
terms. They describe the tunneling assisted by spin-
conserving and spin-flip scattering respectively [9]. These
two terms increase the conductance by opening new tun-
neling channels. Since the spin-conserving contribution is
larger for majority electrons in the parallel magnetic con-
figuration (k↑

F1 > k↓
F1 and therefore c↑1 > c↓1 and same in-

equalities for layer F3 in (6)), this term increases the value
of TMR. In contrast, the spin-flip scattering contribution
is larger for minority electrons resulting in a decrease of
the TMR amplitude.

It is important to note that the coherent potential Σ
increases as a function of the scattering potential be-
ginning as a linear function of the amplitude of spin-
conserving scattering potential and concentration cB. In
contrast, the spin-flip scattering potential does not con-
tribute to the coherent potential at first order. Meanwhile,
the vertex corrections and therefore the “tunneling as-
sisted by scattering” terms in the conductance increase
as well with scattering potential but quadratically. Conse-
quently, the total conductance always decreases with in-
creasing spin-conserving scattering potential but may in-
crease with increasing spin-flip scattering potential, since
the latter does not give a contribution to the coherent
potential at first order.

For comparison with experimental data, the follow-
ing values of Fermi-wave vectors and scattering poten-
tials were used: k↑

F1 = 1.1 Å−1 and k↓
F1 = 0.5 Å−1 for

Co and k↑
F3 = 1.0 Å−1, k↓

F3 = 0.6 Å−1 for Ni80Fe20.

Furthermore, we defined k↑
F =

(
k↑
F1 + k↑

F3

)
/2, k↓

F =(
k↓
F1 + k↓

F3

)
/2. For the scattering potentials, the follow-

ing values were taken: E↑
A = 0.0, E↓

A = 0.0, E↑
B =

α1

[
a0

(
q2
0 + (k↑

F)2
)]

and E↓
B = α3

[
a0

(
q2
0 + (k↑

F)2
)]

with

α3 = α1

[
q2
0 + (k↓

F)2
]
/

[
q2
0 + (k↑

F)2
]
. The used spin-flip

scattering potentials were: ESF
A = 0.0 (no spin-flip scat-

tering in Al2O3) and ESF
B = γE↑

B.
In the above expressions, α1 is the scattering poten-

tial for up-electrons normalized by the height of the bar-
rier, and γ is the spin-flip scattering potential normal-
ized by the spin-conserving scattering potential for spin-
up electrons.

Furthermore the lattice constant in the magnetic layers
a0 is chosen equal to 3.0 Å, the barrier thickness b =
14.0 Å and the evanescent wave-vector in the barrier q0 =
1.0 Å−1.

In order to compare our calculations to Jansen and
Moodera’ results [1], the parameters (α1, γ) were adjusted
in our model to fit the experimental results. Figure 1 shows
the calculated curves and the experimental points from
reference [1] at 77 K and 300 K. The values of the param-
eters (α1, γ) used to obtain these fits are listed in Table 1.
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Fig. 1. Normalized magnetoresistance versus amount of impu-
rities introduced in the barrier. The points are the experimental
data reported from reference [1]. In each plot, the continuous
line is the fit of the data at 77 K, the dotted line is the fit for
the data at 300 K. Values of the coefficient α1 and γ are taken
from the Table 1.

Very good fits of the experimental data are obtained.
In particular, the almost linear decay of magnetoresis-
tance amplitude with the nominal thickness of the impu-
rity submonolayer (except for Co) [1] is well reproduced.
For Co, α1, which characterizes the spin-conserving scat-
tering potential amplitude, varies significantly between
77 K and 300 K whereas for the other elements (Ni, Cu,

Table 1. Spin-conserving scattering coefficient α1 and spin-
flip scattering coefficient γ (see text) deduced by adjusting the
experimental data of reference [1] to formula (10–16).

Material Temp = 77 K Temp = 300 K
α1 γ α1 γ

Co 0.03 0.06 0.2 0.1
Pd 0.078 0.1 0.078 0.16
Cu 0.09 0.16 0.09 0.19
Ni 0.103 0.175 0.103 0.206

Pd), no variation is found. To understand the observed
temperature dependence one has to take into account that
oxides of the impurities introduced in the middle of the
barrier may possess intrinsic spins. Moreover it is well
known [10] that these oxides may order ferro (TK) or an-
tiferromagnetically (TN) due to the indirect or superex-
change interactions. TK and TN are Curie and Néel tem-
peratures correspondingly. The relatively weak decay of
magnetoresistance amplitude versus amount of Co impu-
rities was ascribed in [1] to the presence of Co3+ ion which
has a 3d6 electronic configuration and is generally found in
a low-spin state [10] with no magnetic moment. However,
considering the large variation of α1 between 77 K and
300 K, a significant fraction of Co2+ ion with a correspond-
ing spin of S = 3/2 is probably also present. Two contri-
butions to the scattering amplitude α1 can be expected
in these systems: one is the usual Coulomb scattering on
impurities, the other is the scattering on fluctuations of
the z-component of spin. The former is temperature in-
dependent whereas the latter is exponentially small for
temperatures much below the ordering temperature (TN)
and rapidly increases up to the saturation value S(S + 1)
near TN. Since CoO has a Néel temperature very close
to room temperature, the large variation in α1 between
77 K and 300 K can be ascribed to a change in the rate
of fluctuation of Co2+ spins in this range of temperature.

For the other types of ions, an uncertainty remains re-
garding the degree of oxidation of the metallic atoms in
Al2O3 (Cu+, Cu2+ or Cu3+; Ni2+ or Ni3+; Pd2+) and
their corresponding magnetic properties. However, the
very fact that α1 does not vary between 77 K and 300 K
for these ions indicate that the ordering temperature of
the spin for these impurities, if any, is either much below
77 K or much above 300 K (for instance with Ni impuri-
ties, the Néel temperature in NiO is 520 K).

Concerning the spin-flip scattering amplitude, γ
is found to increase for all elements between 77 K
and 300 K. Two contributions may be expected. The
first one is the spin-wave scattering. Its contribu-
tion to ESF and consequently to γ2 is proportional
to 〈S+S−〉 (see definition below (6)). So in spin-wave ap-
proximation, 〈S+S−〉 = 〈Sz〉 a2

0
2π

∫ π/a0

0
xdx

e
D1x2+∆

k0T −1

=

β T
TK

{
−Ln

[
exp

(
Tc
T

)
− 1

]
+ Tc

T

}
, for two dimen-

sional (2D) ferromagnetic order and 〈S+S−〉 =

〈Sz〉 a2
0

2π

∫ π/a0

0
xdx

e
D2x
k0T −1

=
(

T
TN

)2

for antiferromagnet,

where D1 and D2 are spin-wave stiffness constants
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Fig. 2. Calculated variation of magnetoresistance versus tem-
perature in junctions doped with Cu or Pd impurities.

and TC = EC/kB, Ec being the energy gap in the 2D
spin-wave spectrum due to the anisotropy at the interface
between the electrodes and the insulating layers [11].
The second contribution is due to spin orbit scattering
on the impurities. It does not depend on temperature.
By summing these two contributions, a phenomenolog-
ical form of the thermal variation of γ2 is obtained:
γ2 = β T

TK

{
−Ln

[
exp

(
Tc
T

)
− 1

]
+ Tc

T

}
+ γ2

0 for ferro-

magnet or γ2 = β
(

T
TN

)2

+ γ2
0 for antiferromagnet,

β = J2
B

E2
B
, γ2

0 = 〈λ2
B〉

E↑2
B

. The coefficients β and γ2
0 can

be derived from the values of γ at 77 K and 300 K.
From the knowledge of these coefficients and assum-
ing that α1 does not vary with temperature as found
for Cu, Ni, Pd, it is then possible to calculate the
expected variation of magnetoresistance as function of
temperature in these doped junctions. For illustration,
examples of calculated thermal variation of TMR as-
suming ferromagnetic ordering for Cu and Pd impurities
and using the values found for β and γ0 are shown in
Figure 2. A TK ≈ 10 K was assumed for these impurities.

We however point out that the result of the calculation
weakly depends on the exact value chosen for TK as long
as T � TK. It would be interesting to measure the ther-
mal variations of magnetoresistance on the same samples
used in reference [1] for comparison with these calculated
variations.

In conclusion, we presented a quantum mechanical
model based on Kubo formalism for the calculation of the
magnetoresistance of ferromagnetic tunnel junctions with
impurities inside the barrier. The influence of the amount
of dopant on the magnetoresistance amplitude was cal-
culated and successfully compared to experiments. From
these results, a variation of magnetoresistance versus tem-
perature was predicted.
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